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Derivation and solution of the two-dimensional Toda 
lattice equations by use of the Iwasawa decomposition 

R S Farwell and M Minamii 
Blackett Laboratory, Imperial College, London SW7 2BZ, UK 

Received 8 May 1981 

Abstract. The Iwasawa decomposition is applied to the complexification of an arbitrary 
gauge group G over a two-dimensional space. The two-dimensional Toda lattice equations 
arise from the condition that the gauge field strength vanishes. The method is based on the 
generalisation of Yang’s R-gauge for SU(2) to any semi-simple Lie group G. A 
parametrisation for the solutions to the equations governed by arbitrary classical groups is 
obtained. 

1. Introduction 

Recent years have seen the generation of much interest in the nonlinear lattice 
equations, discovered by Toda in 1966, which describe the motion of a one-dimensional 
system of particles. When the only interactions are between neighbouring particles and 
these have an exponential form, exact solutions of the equations have been found (Toda 
1967). The surge of interest is due to the recognition that a rich mathematical structure, 
both algebraic and geometric, is associated with the equations$. 

It is the association of the equations with the theory of groups and their correspond- 
ing Lie algebras which concerns us in this paper, so we shall briefly review this aspect. 
The equations of motion for a finite system of (n + 1) particles arranged in line are 

where pi is the difference in the displacements of the (i + 1)th and the ith particle. Toda’s 
original model corresponds to the n = 00 limit of this finite system. In (l.l),  K is an n x n 
matrix with the only non-zero entries as follows: 

Kij = 2, 

Ki+li =Kjj+l =- l ,  

i = l , 2 ,  . . . ,  n, 

i = 1,2, a . . ,  n -1. 

t On leave of absence from the Research Institute for Mathematical Sciences, Kyoto University, Kyoto. 
$ Some of the more seminal contributions to the mathematical structure were: discovery of Lax pair; 
derivation of equations for finite systems and their solution; analogy with group structure (Lax 1968, Flaschka 
1974a, b, Manakov 1974, Bogoyavlensky 1976, etc). Subsequently, Leznov and Saveliev (1978) in consider- 
ing the two-dimensional model used the connection with the Cartan matrix; Olshanetsky and Perelomov 
(1979) couched the solution to the one-dimensional model in algebraic terminology, and independently 
Kostant (1979) found solutions to more general integrable systems. 
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However, this matrix arises in the theory of Lie groups as the Cartan matrix for 
SU(n + 1). Furthermore, the Dynkin diagram for the corresponding Lie algebra 
pictorially resembles the system of particles interacting only with their neighbours. It is 
now apparent that the model may be generalised to include systems described by ( l . l ) ,  
but where (IC,]) is the Cartan matrix for any semi-simple group. It has subsequently 
been realised that the integrability and solubility properties of the Toda lattice 
equations will also apply to the generalised equations. 

Toda’s model is not only of interest mathematically, since it also has some physical 
applications. There are similarities between the lattice and its continuum approxima- 
tion, which is described by the Korteweg-de Vries equation and wnich is studied in 
plasma phvsics. Other applications are found in gauge field theories. The simplest 
Toda lattice equation with n = 1 and governed by SU(2) has the same form as the 
Liouville equation, which has appeared in SU(2) gauge theories. In Euclidean space, 
SU(2) instantons with cylindrical symmetry are solutions of this equation (Witten 
1977), whilst in a broken SU(2) theory the only time-independent solution corresponds 
to the Prasad-Sommerfield monopole solution (Bais and Weldon 1978). Also in the 
string model, OmnCs claims that the classical states correspond to solutions of the same 
equation (OmnEts 1979). 

The most recent development, and the one which has motivated our study, is the 
discovery that the Bogomolny-Prasad-Sommerfield equation for the spherically 
symmetric monopole for any group may also be written in the form of the Toda lattice 
equation (Olive 1980). The effective generalisation of the Toda model to the other 
groups has therefore suggested a way in which monopoles may be described in theories 
with an arbitrary semi-simple gauge group. 

Our discussion thus far has been restricted to one-dimensional SU(n + 1) Toda 
lattices and also their generalisation to one-dimensional models with any semi-simple 
compact group. However, other models may be considered; for example, the one- 
dimensional periodic Toda lattice represented by the extended Dynkin diagram and 
also two-dimensiona! models with one time and one space variable. 

Leznov and Saveliev (1978,1979a, b, 1980) have developed the theory of general 
lattices composed of a finite non-periodic chain in two time dimensions. The equations 
of motion for this system are given by 

I .eznov and Saveliev have remarked that when (Ki j )  is a 2nd-order generalised Cartan 
matrix for an infinite-dimensional contragredient Lie algebra, this becomes the sinh- 
Gordon equation. 

Our particular study is concerned with similar non-periodic lattices and so with an 
arbitrary semi-simple group of finite rank. We specifically consider Euclidean space 
with the two variables (s, t )  and employ complex coordinates U = s f i t  and fi = s -it. 
The generalised Toda lattice equations become 

or alternatively, defining 
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(1.4) 

As the variables are complexified, the Lie group G governing the equation must also 
be complexified to 

G, = G x iG. 

As a consequence of the ensuing non-compactness of G,, we can apply the Iwasawa 
decomposition (Helgason 1978, Hermann 1966) to it in such a way that the origin of the 
Toda lattice variables will become apparent. It also leads to an easy means of 
parametrising the solutions of the equation. 

Our method of deriving the Toda lattice equations is somewhat heuristic and so, to 
demonstrate its plausibility and neatness, we shall explain it here with reference to 
Yang's approach to the self-duality condition for SU(2) gauge fields. This approach is 
known as Yang's R-gauge method and is itself an application of the Iwasawa decom- 
position (Yang 1977, hereafter referred to as Y). 

On four-dimensional Euclidean space with coordinates {x,, p = 1 ,2 ,3 ,4}  the 
self-duality condition for the gauge field strength F,,, is 

FCLy = ,u,2pu, (1.5) 

FFy = a,& - 3 3 ,  + [B,, &I. (1.6) 

where F,,, is written in terms of the gauge potentials B, by 

By complexifying the coordinates and defining four new variables 

f i y  = x1 + ixt, 

fiz = x3 - ix4, 

. / zy  = xl - ixz, 

J% = x3 + ix4, 
(1.7) 

and the corresponding components of the potentials, Yang is able to rewrite (1.5) in the 
form 

Equations (1.8) and (1.9) provide a means of determining B, : indeed, (1.8) imply that 

(1.10) 

where det R = det = 1. R is defined such that in the real section 

I? = (Rt)-'. (1.11) 

By making a gauge transformation, Yang argues that it is always possible to choose R to 
have the lower triangular form 

R=-( 1 1 0  ), 
4 P  4 

(1.12) 

where 4 is a real function and p is a complex function on the real section. By using the 
relation (l.ll), is seen to have an upper triangular form. The resultant gauge is 
known as the R-gauge. 
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By substituting (1.10) into (1.9) when R is given by the expression (1.12), the 
equation (1.9) simplifies (see equation (27) in Y) and the problem of determining B, is 
reduced to one of solving this simplified form for p and 4. 

Our first observation is that in the sector y = z = U, Yang’s equation (1.9) (and so 
equation (27)  in Y) becomes over the real section 

(1.14) 

A notable fact is that (1.14) (hereafter called the subsidiary equations) are soluble. 
Indeed, if we let 

4 = exp(-24), (1.15) 

then the solutions are 

a G p  = E ( C )  e-41. (1.16) 41 &,p = € ( U )  e , 

By putting ( I .  16) into (1.13), we obtain 

a,,a,& = F F  exp(-4&). (1.17) 

If we choose F P  = 1 in ( 1.171, comparison of the resultant equation with (I .4) shows that 
we have obtained the simplest Toda lattice equation governed by G = SU(2). 

In the sector y = z ,  (1.8) are automatically satisfied and (1.9) becomes 

.Fur auBG - a,B, i- [B,, Ba] = 0. (1.18) 

We have shown that when B, and B, are given by 

B, = K‘a,R, B, = R-’a,R, (1.19) 

the equation (1.18) reduces to the Toda lattice equation. 
Our derivation in 0 2 of the Toda lattice equations using the Iwasawa decomposition 

is based upon the example above. We show that the same argument may be applied 
even when the group governing the equation is extended to any semi-simple Lie group. 
The method also suggests a means of solving the equations governed by any classical 
group and this is presented in D 3 ,  together with some specific examples. The general 
parametrisation of the SU(n + 1) solution is included in appendix 2. In § 4 we make 
some concluding remarks about the reality conditions on B, and B, and also the 
3imilarity between the one-dimensional Toda model and our two-dimensional model. 

2. Iwasawa decomposition and the Toda lattice equations 

We first note that Yang’s R-matrix (1.12), having complex entries and unit determinant, 
belongs to the group SL(2, e), which is the complexification of the original gauge group, 
SU(2). Furthermore R has a lower triangular form with real diagonal entries. It is 
possible to show that such a form is obtained by applying the Iwasawa decomposition 
NAK to SL(2, e), where K is the maximal compact subgroup and so is SU(2) in this case 
(Ardalan 1978). In particular, by choosing a gauge so that the element belonging to K 
in the decomposition is effectively unity, the explicit form (1.12) is obtained. Having 
observed these properties of the R-gauge, it is obvious that the method previously 
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outlined in the introduction of deriving the Toda lattice equations governed by SU(2) 
can be extended to derive the equations governed by SU(n + 1 ) .  The Iwasawa decom- 
position applied to SL(n + 1 ,  C) specifies an SU(n + 1 )  gauge in which the gauge 
potentials have triangular form with real diagonal elements. For this reason, Yang’s 
R-gauge and its generalisation to SU(n + 1 )  have been referred to as the triangular 
gauge (Brihaye et a1 1978). 

We follow Ardalan (1978) and obtain the analogue of the R-gauge not only when 
the gauge group G = SU(n + l), but also when G is any compact semi-simple group. 
However, we choose representations such that R is not always triangular. Our 
intention is to derive the Toda lattice equations governed by an arbitrary group and 
then find solutions of the equation for all the groups associated with the classical simple 
Lie algebras. 

We must first complexify the group G to G, and then invoke the corresponding 
complex-valued Lie algebra. The group G may either be classical or exceptional and 
the former class may be divided into the following subclasses: SU(n + l ) ,  SO(2n + l), 
Sp(n) and SO(2n)T. It should be noted that in ail cases the maximal compact subgroup 
of the complex group G, coincides with G (Gilmore 1974). If g is a semi-simple Lie 
algebra over C, then it may be decomposed according to Cartan’s root space 
decomposition (Helgason 1978) as 

9 = 6+ c + h + n  + 9 - A  
a € A  

where Ij is a fixed Cartan subalgebra, A+ is the positive root system of g with respect to 6 
and gaol are the root spaces defined by 

g*, = {E E g: ad(H)E = * a ( H ) E  for all H E Ij}. 

We shall use the Chevalley basis (H,, 
a basis for 6 and E,, a basis for g*,, such that 

for g (Humphreys 1972, Carter 1972). H, is 

0 a + pa  A, a # p, 
otherwise, a # p. [En, E p l  = [ 

Na.pEa + p  

(2 .2a)  

(2.2b) 

(2.2c) 

(2 .2d)  

Only n, where n = rank g, of the H’s are linearly independent and the corresponding set 
of n positive roots is denoted by r+. Any root a E r+  is known as a simple root, that is, 
it cannot be written as the sum of other positive roots. As a consequence of this 
property, we can show that for a, p E r+  

Nu,p = NuI.--p = 0.  

In addition for a, p simple, the matrix defined by the commutation relation (2.2b) 
is the (n x n )  Cartan matrix associated with Q. 

Since Q is a semi-simple Lie algebra over C, we may consider it as a Lie algebra gR 
over R with complex structure, and the associated Lie group may be denoted by G,. By 

t Complex extensions of SU(n + l), SO(2n i l), Sp(n) and SO(2n) are denoted SL(n i 1, C), SO(2n + 1, C), 
Sp(n, C) and S 0 ( 2 n ,  C) and their algebras a,, b,, c, and b, respectively. It should be remarked that Sp(n) is 
not Sp(n, R), the latter not being compact. 
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combining the Cartan decomposition of Q and the root space decomposition of gR, the 
Iwasawa decomposition for G, is obtained. It is given by 

G, = NAK, (2.3) 
where N and A are subgroups of G, corresponding to the subalgebras g-, and b 
respectively, and K is the maximal compact subgroup. The decomposition NAK is 
quite general and may be applied to any non-compact, semi-simple Lie group. 
However, if G, is of the form 

(2.4) G, = iG x G, 

we may be more specific about N, A and K. Indeed, 

K = C ,  

the original gauge group; also A is generated by b over R and N by g-, over @. Hence, 
any group element g E G ,  may be written as 

g = nak (2 .5 )  

with n E N, a E A, k E G. n and a are given by 

where z ,  are complex functions and 4, are real functions, all dependent on both 
coordinates, U and 12, 

14 = 5 +it ,  ii 7s-it.  (2.7) 

Note that the suffix a of H ,  corresponds to the simple roots, so only the linearly 
independent basis elements are included. 

Our discussion concerning the Iwasawa decomposition has involved the subgroup of 
G, corresponding to the nilpotent subalgebra Q - ~ ,  but not the subgroup corresponding 
to the equivalent subalgebra g+a, which is spanned by E+a. It is possible to include this 
other subgroup in another version of the Iwasawa decomposition in which any element 
a E G, i s  given by 

f = n'n'k. (2.8) 
I 

In (2.8) k" E G and the representations for 6 and a' are 

To generalise the R-gauge method, we gauge away the elements k,CEG in the 
decompositions ( 2 . 5 )  and (2.8) for g and g respectively. This depends on choosing the 
wme gauge for both elements, g and g, and so we restrict them by imposing the 
condition 

w 

k = k. (2.10) 

However, it should be noted that to derive the Toda lattice equations it is not necessary 
to assume any relationship between the parameters z,, $a in the representation of nu 
and Fe. thct in iin'. 

- 
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The condition (2.10) allows us to choose the gauge in which g and are given by R 
and d ,  where 

R =nu,  R = iia'. (2.11) 

B,(u, i i )  = R-'a,R, B ~ ( u ,  i i )  = R-'a,R. (2.12) 

By analogy with (1.19) we define the left-invariant gauge potentials B ,  and B, by 

After substituting the explicit forms (2.11) for R and 2 in (2.12), we obtain 

B, = a-'(n-'a,n)a + a-'a,a, BE = a'-'(n"-'afin")a' + K ' a p a ' .  (2.13) 

We now adopt the following ansatz: 

which is equivalent to the assumption that, when a is not a simple root, 

that is, for CY & T+.  This restriction to include only the simple roots is in accordance with 
the Toda model developed from the theory of Lax pairs (Bogoyavlensky 1976) in which 
the non-simple roots do not play an important role. 

By using the representations for n and ti in (2.6) and (2.9) and the commutation 
relations (2 .24 ,  we can show that for a E T +  

Y Q  = auz,,  Fa = a&. (2.16) 

Also from the representations for a and a', it is straightforward to obtain 

(2.17) 

due to the commutation of the basis elements Ha. Further, 

a-'E-,a = exp ( 1 K.&@) E-a, a'-'E+,a' =exp( E+ Ka&)E+a (2.18) 
@Er+ P E W  

and so by combining (2.14)-(2.18) with (2.13), we have 

In order to impose the condition (1.18) that 

FUG = duBfi -afiB, + [B,, BE] 

vanishes, we calculate firstly 

[Bu, &I = - C + [ ya (ai&) exp( C Ka&@)Ka$-a 
Q, Y E T  @ E r +  

(2.19) 

(2.20) 
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and secondly 

(2 .21)  

Now by equating the coefficients of Ha and E,, in (2.20) and (2 .21)  the condition 
reduces to the following three equations: 

(2 .23 )  

We note that for G = SU(2) ,  there is only one simple root and K = 2 ,  so in this case 
12.22) and (2.23) correspond to (1.13) and (1 .14)  respectively with 

I’ =- a,,/), l7 = “6, 4 =e-(*+*) (2 .24 )  

Therefore, by analogy (2 .22)  is the main equation and (2 .23)  are the subsidiary 
equations. Fortunately, as in the SU(2)  case, we are able to solve the subsidiary 
equations to give 

(2 .25)  

where e ( U )  and ;(a) are to be determined by the ‘boundary conditions’. If we put the 
solutions 12.25’) into (2.22), then the main equation becomes 

When E? = 1, the equation (2 .26)  is one particular form of the Toda lattice equation 
governed by an arbitrary group G with Cartan matrix K. The form (1 .2 )  of the Toda 
lattice equation may be derived by defining the new variables 

(2 .27a)  

and 

However, it should be said that the algebraic meaning of the variables p ,  is somewhat 
vague, but in our form (2 .26 )  we can trace the origin of the CL, and 4, back to the 
coefficients of the generators of the abelian subgroup in the Iwasawa decomposition. 
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Also we can give explicit expressions for the potentials B, and B, by substituting the 
solutions (2.25) for ya and fa into (2.19). In particular, when E = E' = 1, this gives 

(2.28) 

We close this section by remarking that indeed the Iwasawa decomposition has 
allowed us to generalise Yang's R-gauge method and hence obtain the Toda lattice 
equations governed by an arbitrary semi-simple Lie group. We reiterate that to derive 
these equations it is not necessary to impose any condition relating the parameters of R 
and R'. This differs from the R-gauge where from (2.24) we see that in the real section 
y' = jj, where the bar denotes complex conjugation, and, for consistency with (1.19, 
4 = +, We discuss this point in greater detail in a later section. 

3. Parametcisation of the solutions 

The purpose of this section is to demonstrate a method of obtaining the solutions to the 
Toda lattice equations (2.26) when the governing group G is classical. The solutions are 
parametrised in the form of determinants. As in 0 2, it is the Iwasawa decomposition of 
R and I? given by (2.11) which plays an important role. 

Since we have factored out the gauge terms in g and E, the resultant elements R and 
& must belong to the symmetric space GJG. In addition B, and B, given by (2.19) or 
(2.28) compose a matrix connection one-form, taking values in the algebra cor- 
responding to G,, which is defined by 

w = B,du + B, dii. (3.1) 

O=dw+$[w,w]=O. (3.2) 

w = go' dgo (3.3) 

B, = go' &go, B, = go' a,go. (3.4) 

Then the condition (1.18) implies that the curvature two-form must vanish, that is, 

Conversely, if R = 0, then the connection o should be a left-invariant one-form given by 

where go E G,. Consequently B, and Bn are given by 

However, we have already capitalised on the definitions of B, and B, given by (2.12). 
To show that the two sets of definitions (3.4) and (2.12) are non-contradictory, we make 
explicit the property alluded to in 0 2 that the gauge potentials are left-invariant. In fact, 
B, and Bn given by (3.4) are unchanged when go is transformed by the respective 
lef t-translations 

go + F - ' m o ,  go + r-"go. (3.5) 

R = P'(ii)go, 2 = r-'(u)go, (3.6) 

Hence, if we are permitted to make the identifications 

at least up to a gauge transformation, then the two definitions are consistent. In general 
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r and i may belong to G,, but are restricted so that r and i depend only on U and E 
respectively. We use (2.3) to write r' and r in decomposed form as 

., 
i = n'oa'oko, r = noaoko. 

By use of these equations, (3.6) can be rearranged to give - 
go = n'odokoR, go = noaokok (3.7) 

It is known that for all k"E G, Ad k" leaves G, invariant. In particular (Hermann 
1966, Kostant 1973) 

kllnakll-' - - n'a'k', 

where  EN, a 'EA,  k ' E  K, and this may be rewritten as 

k"na = n'a'k'k". 

We use (3.8) to rearrange equations (3.7) to give 

go = n'oa'oR'k'k;, 

go = noaoli'k'ko, 
.,- 

where - 
R' = n'a' R' = f i ' ; ' .  

(3.8) 

( 3 . 9 ~ )  

(3.9b) 

We now require that R and X? of § 2 be replaced by R' and @', If we define BL and BZ 
from R' and 2' respectively by analogy with (2.12), then these are just gauge 
transformations of the potentials B, and Ba given by (3.4). For consistency, B: and BZ 
must be defined in the same gauge, and hence in (3.9) we put 

k'& = i ' k o .  (3.10) 

By equating the right-hand sides of (3.9) and imposing the condition (3.10), we obtain 

a'oRR'-'ail = &*no, (3.11) 

where we have dropped the primed notation. Hence (3.11) may be obtained effectively 
from (3.6) when i and r are given by+ 

i = n'o(E)a'o(ii), r = no(u)ao(u).  (3.12) 

We use the following representations for the decompositions (3.12): 

Our method of solution depends on taking determinants of submatrices of the left- and 
right-hand side of (3.11) and then equating. Firstly, we consider the left-hand side, 

t David Olive has made us aware that these restricted forms for r and i may be ascribed to :he path 
independency of go = T exp j$;$ (B, du +BE d i ) ,  Since_ R ( u ,  i?)).= T exp 1:;;:; B ,  du and R(u, i) = 
T exp I{,$/ B,  dfi, we can write go in two ways: go = R(u,  O)R(u, fi) = R(0,  i ) R ( u ,  a). We thank him for this 
communication. 
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which is explicitly given by 

L = exp(-CiP~,) exp(zs~-s)  exp[($, + &X,I exp(i&+@) exp(-F,H,), (3.14) 
where in the exponents the index p is summed over all positive roots, while the index a 
is summed only over the simple roots. Since for all the classical algebras the H, are 
diagonal, the properties of L are essentially those of the product of exp(r&-s) and 
exp(i&+@). Now if L' is an (n x n) lower triangular matrix and L" is an (n x n) upper 
triangular matrix with 

L = L'L", 

then the only contributions to the (m X m) submatrix (Lkl)lsClsm are from the (m x m) 
submatrices (LLl)l<k,lsm and (L&)lsk,lsm. Hence, for 1 s k, 1 s m, 

det(Lkl) = det(L;I) det(Li1). (3.15) 

In appendix 1 for each classical Lie algebra we specify some set of submatrices 
{((E-&,,,): 1 6 m} in which each member has a lower triangular matrix lying in a block 
where all the other entries are zero. We restrict our attention to these submatrices, and 
then from (3.14), we can show that by using (3.15) 

det(Lki) = det[(exP(-fi,H,))ki] det[(exp(z,E-,))k~I det[(exp[(& + &)H,])kil 

x det[(exp(i,E+,))k~l det[(exp(-clJL))k~l 

where 1 6  k, 16 m 6 n for a,, c,, b,, 2 s k,l s m s n + 1 for b,. 
Since for each algebra in the appropriate range 

det[(exp(z,E-,))kll= 1, 

and since the H, are diagonal, this becomes 

det(Lkl) = exp{Tr[(- C ~ J L  k1I) exp{Tr[((& - 4, )H, ) kll) exp{Tr[(-h,H, ) k~ I). 

Therefore, (3.13) may be written as 

exp{Tr[((& + $,)Ha)kII} = exP{Tr[((Fa +fia)Ha)kll} det[(~o'nO)kll* (3.16) 

Before reducing this expression further, we shall consider the representations (3.12) 
for ao, 50, no and Co. (3.11) provides a relationship between R and E, 

R = F - ' r i  

and so B,, for instance, is given by 

B, = R-'r-'(a,r)R +&la& (3.17) 

as well as by (2.12). In (2.13) B, has a specific form dependingonly on H, and E-, and, 
moreover, as a consequence of the ansatz (2.14), the basis elements correspond only to 
the simple roots. Hence there must be some condition on the parameters in r so that B, 
given by (2.17) also has these properties. In particular, we are concerned with the 
coefficient of E-, in (3.17). By using (3.12), 

r-la,r = a i l  (no' auno)ao + ai' auaO 
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and so, by referring to the commutation relations (2.2), we see that the only term 
containing E-, is 

&-*ai1 (no' a ,no)aod.  (3.18) 

Firstly, by analogy with the ansatz (2.14), we assume that 

n i l a u n o  = + q5,E-,. 

that is, we impose the condition that, for CY& ri, 

,€Tr 

4, =o ,  
and then (3.18) becomes 

(3.19a) 

(3.20a) 

This last term should be compared with the corresponding term in B, = R-'a,R ; that is, 
from (2.28) 

Hence 

Similarly, by considering Bi, in the same way, we may show that 

where when CY is a simple root & is defined by 

and for a &  T 
* 
(ha = o .  

(3.21~1) 

(3.21 6) 

(3.19b) 

(3.20b) 

However, if we use the representations for no and CO in (3.19), it is possible to show 
that, for LY E T * ,  - 

4a = auvu, 4a = (3.22) 

Hence (3.21) and (3.22) provide a relationship between the parameters v, and p, 
appearing on the right-hand side of (3.16) and, bearing this in mind, we shall return to 
the further simplification of that equation. By considering the explicit form of the 
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exp($/, + J m )  = exp(pm + C;m> detGiilno),, 1 s m  s n  for a,, E,, ' 
1 s m  < n -2 forb,,, 

2 s m < n + 1 for b,, 

forb, 

exp(dm-i + 6m-1) = eXP(pm-i + cm-1)  det(EG1no)m, 

exp(4,-1 +&-I) = exp(p,-1 + C;,-l)[det(n'o'n0),-1/det(~~'n0),1~'~, 

exp($, + 4,) = exp(p, + &)[det(n'ii1n0),-1 det(n"o'n~),l~'~, J 

(3.23) 

so (3.23) gives 

= [(auv21)(a,~lz)~-1/2(l + i;12v21). 

If we use the variable 

p = -($+ $1, 
then (3.24) is 

p = -In(l+ ~ ~ ~ v ~ ~ )  + 2 1n(a,vzl a,c12), 

reproducing Witten's SU(2) solution (Witten 1977). 

no = exp(viieij) = 1 + vi,eij + $Smiekivijvkm 

(ii) SU(3). 

and so 
dl = auvZl = exp(-2pl+ p2), 4z = auv32 = e x p h  - 2p2). 

There is also the additional constraint 

(3.24) 
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x [(1+ v1c1+ v3Q3+ v:Q: )(1+ G Z +  vi+;) 

39 

exp(42 + $2) = [(auvl)(a,cl>I-’[(auv2)(a,1;2)3-’ 

-(vl+c2v: + v3Q;)(51+v2Q: +Q3v;)]. (3.29b) 

Of course, the solutions are more accurately expressed by introducing the explicit forms 
for V3, Q3, V: and V:. However, the form (3.29) is often more convenient to 
manipulate; for example, to prove that (3.29) really do satisfy the Toda lattice equation. 
This is also where the constraints (3.28) come into play. To demonstrate this, we 
calculate a,a,($l +&) by taking logarithms of ( 3 . 2 9 ~ )  and then differentiating: 

aua,(& + $1) = yr(1 + v1c1 + v3Q3 + v:Q:>-’ 

= exp[-2($1+ &)I. (3.30) 

is used to denote 

(1 + vlcl + v3 P3 + v: Q: )(auvla,cl + auv3a,Q3 + a,v: a,Q: ) 

-(vla&+ v3acP3+ v:a,Q:)(;,a,vl+ Q3auv3+ Q:a,vd) 

- ( V I +  Q;v3+ V:c2)(c,+ Q3v; + Q:v2)] 

=(a,vl)(a,;,)[(l+v,el+ v3Q3+ v:Q:)(l+ vi?; +v232) 

= [(a,vl)(a,c1)1~[(a~v2)(a,;2)3 exp& + $A 
using (3.28) and (3.296). So (3.30) becomes 

afiau(41 + $11 = expC(42 + 6 2 )  -2(41+ $111 

and comparison of this with (2.26) shows that rL1 + given by (3.29a) indeed satisfies 
the Toda lattice equation. 

(iv) SU(4). We shall briefly consider the main features of the solutions. It is 
illustrative of the general SU(n + 1) solution, since unlike SU(2) and SU(3), but similar 
to Sp(2), the original form of the constraints (3.20) is rearranged. In this way the 
derivatives of coefficients of the E-, in no corresponding to non-simple roots are 
expressed as the derivatives of coefficients of those for simple roots. Here, if 

no = exp(vi,eij), 

then the form ( 3 . 2 0 ~ )  of the constraints are 

auv3l- v32(auv21) = 0, 

auV4l-v43(auV31)- v42auv21 =o, 
auv42 - v43(auv32) = 0, 

where 
1 1 

v31 = v31 +zv32v21, 

v41 = v41 fz(v42v21 + v43v31). 

v42 = v42 + zv43 v32, 

1 

The first two constraint equations have a convenient form and, using the first, the third 
can be reduced to 
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as required. The value of this rearrangement was shown for Sp(2) since it provides for 
easy manipulation of 9 in (3.30) to give a common factor (a,~~)(a,;~). There are similar 
conditions for the tilde parameters. 

The general parametrisation for the SU(n + 1) solution is given in appendix 2, so we 
shall not consider further the SU(4) case. 

(U) SO(5) and SO(6). Since the algebras b2 and c2 are isomorphic, the solutions of 
the Toda lattice equations governed by SO(5) are the same as those for Sp(2). The 
Cartan matrix for SO(5) is the transpose of that for Sp(2), so if we exchange the 
parameters +I and $2 in (3.29) we have solutions (3.23) for SO(5). Also, a3 and b3 are 
isomorphic and similar remarks hold for their Cartan matrices. So the solutions for 
SO(6) are given by those for SU(4) with G3 unchanged and qbl and G2 interchanged. 

4. Discussion and concluding remarks 

In QQ 2 and 3 we have applied the Iwasawa decomposition to the complexification of 
some semi-simple Lie group G .  By this method we have been able not only to derive the 
Toda lattice equations governed by G, but also to parametrise the solutions to the 
equations. 

The derivation of the equations is based on a generalisation of Yang's R-gauge 
method. However, unlike Yang, we have not imposed any relation between the 
parameters of R and E.  This is possible since we are always able to solve the subsidiary 
equations for 2 ,  and 5, in terms of $e and &, and the latter pair of parameters always 
appear in the combination 

&, + = -M - ' ) , p ~ p .  

However, if we wish to take a more physical viewpoint, then we should be able to 
recover the original gauge theory when we transform back to the real coordinates, s and 
t .  In this case we must demand that B, and B, have values in the Lie algebra of G and 
not G,. Consequently, we have to impose some condition on B, and B, and hence 
impose some relationship between R and 2. The condition is constructed by invoking 
the differences between the Lie algebras of G and G,. We show that a sufficient but not 
necessary condition is given by 

R = ( R  ) - I ,  (4.1) 

not only for G = SU(n + 1) (Yates 1978), but also when G is any classical group. 
The complex extensions G, must first be divided into two categories to state 

explicitly the differences between G and G,. Category (i) contains SL(n + 1, @) and 
Sp(n, 63, whilst (ii) is comprised of SO(2n + 1, @), S0(2n, e). For those in (i) the 
elements of G are unitary and in (ii) the elements of G are real. These properties are not 
exhibited by the corresponding G, and so the respective conditions on the potentials are 

(i) Bl: = -BE, 

(ii) B: = B,. 

( 4 . 2 ~ )  

(4.26) 

These conditions are satisfied if (4.1) holds for elements R, 2 E G,/G in both categories. 
Since 

BE =Rt(8,(Rt)-')= -[R-18,R]'=-BL 
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( 4 . 2 ~ )  is satisfied. Also for category (ii) the elements of G, and G are orthogonal, so 

(Rt)-' = (RT)t = R *  

and (4.1) becomes 

I ? = R * ,  

which ensures that (4.2b) is satisfied. 
Since the potentials are left-invariant the condition (4.1) is only sufficient for (4.2) to 

be satisfied. We may left translate R and I?, so that the transformed elements are no 
longer related by (4.1), but (4.2) still remains true. 

Using the representations (2.6) and (2.9), the condition (4.1) reduces to a relation- 
ship between the parameters of R and I?, namely 

.. 
2, = fa, *a = *a. (4.3) 

A second notable feature of the method here is the introduction of the factors r (u)  
and ?(a) to obtain explicit expressions for the solutions. This feature is not paralleled by 
the one-dimensional model, obviously since the functions are only dependent on the 
one coordinate, t. However, the algebraic properties of the one-dimensional model of 
Olshanetsky and Perelomov (1979) do have some similarity to the two-dimensional 
case. If we wish to compare our method with that of Olshanetsky and Perelomov 
(hereafter referred to as OP), we must relate r and r' to some factor in the one- 
dimensional model. 

To achieve this, we first reduce U and z2 to t, so that (1.18) becomes 

A - @ = [ A ,  B ]  (4.4) 
with A = R-'R and B = I?-'A, the dot referring to differentiation with respect to t. If 
we introduce 

L = B - A ,  

then (4.4) has the form of a Lax pair 

L = [L, A ] .  

Drawing on the theory of the Lax pair, we can say that (4.6) is equivalent to 

~ ( t )  = R-'L(o)R, A = R-'R. 

By rearranging (4.7) and then using ( 4 3 ,  we obtain 

L(0) = RL(t)R-' = RI?-'iR-'-RR-' = -&(RI?-') (RI?-')-', 

which becomes 

L(0) = - - ix- ' ,  

when we define 

x = RI?-'. 

Substitution of the decompositions (2.11) for R and I? in (4.9) gives 
- - 1 - - l =  x = n a a  n -nhn'-', 

(4.5) 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

where h = a;-' is a diagonal matrix. (4.10) exactly reproduces the results in OP. x is 
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described by the initial data since it follows from (4.8) that 

x(t)  = x(0) exp[-L(O)t]. (4.11) 

From (4.9) and (3.13) we observe that x ( t )  corresponds to ?ilro and also in (4.10) h 
contains the Toda lattice variables. So the matrix manipulations on x ( t )  used in OP to 
solve the equations are equivalent to those we apply to (3.13), also to solve the 
equations. 

There may be a fundamental reason mathematically for splitting up x into the 
product of functions (4.9). Such an idea deserves more thought, paJticularly with 
reference to the theory of the symmetric space GJG to which R and R belong. 

In 9 2 the Toda lattice equations are derived from the condition that the gauge field 
strength Fua should be sourceless, and in § 3 this condition was shown to imply that the 
curvature two-form (3.2) should vanish. Now (3.2) may be considered as the 
integrability condition for the set of linear equations 

d0 = Bw, (4.12) 

where 6 is a row of 0-forms. The set of equations (4.12) should be investigated for our 
model, since it is anticipated that they might provide some insight into the Backlund 
transformations of the Toda lattice equations (Farwell and Minami 1982). 
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Appendix 1. A matrix representation for the Chevalley basis 

We shall use eij, 1 c i, j c n, to denote the n x n matrix in which the only non-zero entry 
is 1, where the ith row andjth column intersect (Humphreys 1972). From this definition 
it follows that 

eijekr = 8jkeii (Al.l)  

and so 

[eij ,  ek,] = sigil -Slieki. (A1.2) 

In each case below the suffix i on the basis elements Hi of 4 refers to some specific 
ordering of the simple roots comprising T+. By E+i and E-i ,  we mean the correspond- 
ing elements of the bases of gCa and g-a respectively; that is, those which satisfy the 
commutation relations (2.2~1, namely 

[E,;, E.-i] = Hi. 

The required E+i, E-i  may be selected from the sets {E+=}, {E-m}  by inspection of the 
commutation relations derived using (Al.2). 

Note that in the following representations for each class of Lie algebra, the matrix 
E+; is taken to be the transpose of Ei. Such a specification conforms with the 
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commutation relations (2.2). 

Basis for b 
(i) an-(n + 1) x ( n  + 1) matrix representation 

Hi = eii - ei+li+l (1 < i s  n) 

g - a . a e A f  eij (1 G j  < i C n + 1) 

9 +a.a E A+ e.. 11 =e?: 11 

(ii) 6,-(2n + 1) x (2n + 1) matrix representation 

(1 G j < i  ~n + 1). 

Basis for IJ Hi-1 =eii -ei+ii+i -en+in+i +en+i+tn+i+l ( 2 s i a n )  

H n  = en+in+i -e2n+i2n+i 

g - a , a e A +  ei+ij+i -ej+n+li+n+i (1 ~ j <  i a n )  

ei+i+ni -eii+i ( l s i i n )  

en+i+lj+l -en+j+li+l (1 s j < i  ~ n )  

g + a , a E A +  ej+ii+l -ei+n+lj+n+l ( l s j < i i n )  

eii+i+n -ei+ii 

ej+ln+i+l -ei+ln+j+l 

(1 c i c n). 

(1 a j  < i c n). 

(iii) cn-2n x 2n matrix representation 

(1 c i s n - 1) Basis for b H.=e . . - e .  i ii i + l r + l  . -en+in+i +en+i+ln+i+t 

H n  = enn - e2n~n 

g-a,aczA+ e. .-e.  ti i+ni+n (1 C j < i  cn) 
encii (1 c i ~ n )  

en+ji + G + i j  (1 cj< i c n )  

+a.a EA+ eji -en+ij+n (1 ~j < i c n)  

ein+i (1 s i  ~ n )  

ein+j + ejn+i (1 a /< i a n ) .  

(iv) bn-2n x 2n matrix representation 

Basis for IJ H. i = e.. ii -e. i+ l r+ l - en+ in+ i  . +en+i+ln+i+l 

H n  = en-in-1 + e n n  -e2n-i2n-i - eznzn 

(1 sic n - 1) 

(1 ~j < i s n) e.. - e .  g - a , a e A +  11 ~ + n i + n  

( l C j < i S t I )  

(1 aj<i S n )  

(1 a j  < i S n). 

It is important to note various properties of the bases for each class. In all cases, the 
Hi are traceless diagonal matrices. Furthermore, for an the set {E-a}  is composed of 
lower triangular matrices with zeros on the diagonal, and so the transposed set {E+a} 
consists of upper triangular matrices with no diagonal entries. Although the sets {E-.a} 
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are not triangular for the other three classes, it is possible to select submatrices which do 
have this property. Let [ (E-a ) lm]  denote a submatrix of the basis element E-,  where 
the range of 1 and m is specified. Then 

(a) for 6,: the set { [ (E- , ) lm]2sf ,msn+l}  are lower triangular with zero diagonal 
entries and the set { [ (E -a )~m]2r~~n+ l .m=1  or , , + Z ~ ~ ~ ~ , , + J  have all zero entries; 

(b) for c, and b,: the set { [ (E- , ) fm] ls f ,msn}  are lower triangular with zero diagonal 
entries and the set { [ (E -n )~m] l r~sn , , ,+ l~ms~, , }  have all zero entries. 

Corresponding results concerning upper diagonal and zero submatrices of E+, may be 
deduced using the operation of transposition. 

Appendix 2. Parametrisation of the SU(n +1) solution 

In Q 3 we show that the solution of the Toda lattice equation governed by SU(n + 1) is 
given by 

(A2.1) 

In general, we use the representations (3.12) for no and i o .  However, since in appendix 
1, for a,, each E-, has the simple form eij, 1 s j < i s n + 1, we adopt the double index 
notation for v and J and write 

$, + 4, = p,,, + cm +In det(Ko1no),, 1 s m s n .  

- - I  no = exp 1 Jjieji 
( i > j  

We use the abbreviations 

(A2.2) 

(A2.3) 

(A2.4) 
k = + l  k = j + l  

The range of summation in the second terms ensures that corresponding to the simple 
roots, i = j + 1, 

Vt ti vi!, p; = Jii. 

Then (A2.2), (A2.3) become 

(A2.5) --1 no= I +  1 Vtei j ,  no = 1 + C Q;eii. 
l s j < i S n + l  l < j < i s n + l  

Conditions on Vi and ci arise as a consequence of the constraints (3.20): 

a,v; -v,(a,V;j)=O f o r i > j + l ,  (A2.6) 

a& + Q;(a&j) = 0 f o r i > j + l .  (A2.7) 
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Now, from (A2.5) 

l;Ei<kr;n+l  k = j + l  

+ 2 ( V; + k = j + l  V; vij)eii 
l s j < i ; E n + l  

and so the submatrix 

(A2.8) 

i-1 
V; + 1 + lsj<i;Em 2 ( v $ +  k = j + l  ckvii)eij+ 1 =sj<i m ( k = j + l  

The relations (3.21) and (3.22) become for each j = 1,2 , .  . . , n 

(A2.9) 

where (Kim): j ,  m = 1,2, . . . , n is the Cartan matrix for SU(n + 1). 
If we define the variable 

pj = - K j m ( + m  + $m), (A2.10) 

then the solution (A2.1) becomes for j = 1,2, . . , , n, 

with 
(A2.6) and (A2.7). 

given by (A2.8), with the proviso that the parameters are subjected to 
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